• Associate Professor Xudong Wang holds a prototype of the researchers' energy harvesting technology, which uses wood pulp and harnesses nanofibers.

Associate Professor Xudong Wang holds a prototype of the researchers' energy harvesting technology, which uses wood pulp and harnesses nanofibers. (Photo : Stephanie Precourt/UW-Madison)

Researchers at the University of Wisconsin-Madison, among them Chinese materials engineers, have developed a simple method that converts footsteps into usable electricity.

Xudong Wang, an associate professor of materials science and engineering at UW-Madison, his graduate student Chunhua Yao, and their collaborators developed a method that puts to good use a common waste material: wood pulp.

Like Us on Facebook

The pulp, which is already a common component of flooring, is partly made of cellulose nanofibers. They're tiny fibers that when chemically treated, produce an electrical charge when they come into contact with untreated nanofibers.

When the nanofibers are embedded within flooring, they're able to produce electricity that can be harnessed to power lights or charge batteries.

And because wood pulp is a cheap, abundant and renewable waste product of several industries, flooring that incorporates the new technology can be as affordable as conventional materials.

While there are existing similar materials for harnessing footstep energy, they're costly, non-recyclable, and impractical at a large scale.

Wang's research centers around using vibration to generate electricity.

For years, he's been testing different materials in an effort to maximize the merits of a technology called a "triboelectric nanogenerator" (TENG).

Triboelectricity is the same phenomenon that produces static electricity on clothing. Chemically treated cellulose nanofibers are a simple, low-cost and effective alternative for harnessing this broadly existing mechanical energy source, Wang says.

The UW-Madison team's advance is the latest in a green energy research field called "roadside energy harvesting" that might rival solar power -- and it doesn't depend on fair weather. Researchers like Wang that study roadside energy harvesting methods see the ground as holding great renewable energy potential well beyond its limited fossil fuel reserves.

"Roadside energy harvesting requires thinking about the places where there is abundant energy we could be harvesting," said Wang.

"We've been working a lot on harvesting energy from human activities. One way is to build something to put on people, and another way is to build something that has constant access to people. The ground is the most-used place."

Heavy traffic floors in hallways and places like stadiums and malls that incorporate the technology could produce significant amounts of energy, said Wang.

Each functional portion inside such flooring has two differently charged materials -- including the cellulose nanofibers, and would be a millimeter or less thick. The floor could include several layers of the functional unit for higher energy output.

"So once we put these two materials together, electrons move from one to another based on their different electron affinity."

The electron transfer creates a charge imbalance that naturally wants to right itself, but as the electrons return, they pass through an external circuit. The energy that process creates is the end result of TENGs.

Wang said TENG technology could be easily incorporated into all kinds of flooring once it's ready for the market.

He's now optimizing the technology, and hopes to build an educational prototype in a high-profile spot on the UW-Madison campus where he can demonstrate the concept. He knows it will be cheap and durable.

"Our initial test in our lab shows that it works for millions of cycles without any problem," he noted.

"We haven't converted those numbers into year of life for a floor yet, but I think with appropriate design it can definitely outlast the floor itself."

The team published details of the advance Sept. 24 in the journal Nano Energy. The Wisconsin Alumni Research Foundation holds the patent to the technology.

Other authors on the paper include Zhiyong Cai of the Forest Products Laboratory and UW-Madison graduate students Alberto Hernandez and Yanhao Yu. The Forest Products Laboratory and National Science Foundation provided funding for the research.